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Abstract: The present study considers the collection and use of ecotoxicity data for risk assessment with species sensitivity
distributions (SSDs) of chemical pollution in surface water, which are used to quantify the likelihood that critical effect levels are
exceeded. This fits the European Water Framework Directive, which suggests using models to assess the likelihood that
chemicals affect water quality formanagement prioritization.We derived SSDs based on chronic and acute ecotoxicity test data
for 12 386 compounds. The log-normal SSDs are characterized by the median and the standard deviation of log-transformed
ecotoxicity data and by a quality score. A case study illustrates the utility of SSDs for water quality assessment andmanagement
prioritization. We quantified the chronic and acute mixture toxic pressure of mixture exposures for >22 000 water bodies in
Europe for 1760 chemicals for which we had both exposure and hazard data. The results show the likelihood of mixture
exposures exceeding a negligible effect level and increasing species loss. The SSDs in the present study represent a versatile
and comprehensive approach to prevent, assess, and manage chemical pollution problems. Environ Toxicol Chem
2019;38:905–917. �C 2019 SETAC
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INTRODUCTION

Human activities cause the emission of more than 100000
chemical substances, with expected increases in compound
diversity and emitted masses (United Nations Environment
Programme 2013; European Chemicals Agency 2016; Bernhardt
et al. 2017). This results in diverse ambient concentrations (e.g.,
the EMPODAT Database, Norman Association 2013), body
residues (US Environmental Protection Agency 2009), ecological
risks (Malaj et al. 2014), and eventual ecological and human
health impacts (e.g., V€or€osmarty et al. 2010; Hoekstra and
Wiedmann 2014; Sch€afer et al. 2016). Chemical pollution is a
main driver of deterioration of freshwater biodiversity
(V€or€osmarty et al. 2010). Complementary policy approaches
(chemical safety assessment, environmental quality assessment
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and management, and product environmental footprints) are
used to prevent and limit impacts of such pollution. These
require ecotoxicity data and amethod to convert these data into
estimates of benchmark concentrations for no or negligible
impacts (further referred to as “sufficiently protected”) or in
expected impact magnitudes of pollution (expressed as, e.g.,
species loss). Species sensitivity distributions (SSDs) support
making both these conversions, for separate compounds and
mixtures (De Zwart and Posthuma 2005).

An SSD reflects the observation that interspecies differences
in sensitivity to a chemical resemble a bell-shaped distribution
(on a log scale). An SSD is derived by fitting a selected statistical
model (e.g., log normal) to compound-specific ecotoxicity data.
Lack of ecotoxicity data is often mentioned as a reason that we
have SSDs for only a few chemicals for current policy
applications. Criteria for SSD data selection thereby vary among
the policy approaches and jurisdictions, for example, for the
minimum number of data points (taxa) needed and for minimum
study quality characteristics (Posthuma et al. 2002). Despite that,
SSDs are widely used for decision support (Supplemental Data,
�C 2019 SETAC



TABLE 1: Criteria for operationally characterizing ecotoxicity data as
“acute” (ECETOC 1993); longer exposure durations were classified as
“chronic”

Species group Acute test duration

Algae 12h
Bacteria 12 h
Unicellular animals 12–24h
Crustaceans 24–48h
Fish 4–7d
Mollusks, worms, etc. 2–7d
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Section 1). This likely relates to an observed association between
SSD-predicted and observed biodiversity impacts (Posthuma
andDe Zwart 2012), to relative ease of use, and to representing a
higher-tier approach compared with using benchmark
concentrations.

Several hundreds of thousands of ecotoxicity test results are
available globally, but currently few are used to derive SSDs.
Often, strict criteria for SSD data selection (Klimisch et al. 1997;
Moermond et al. 2016) and a minimum diversity of taxonomic
groups and species (European Chemicals Agency 2008) are
prescribed in SSD derivation. That has currently resulted in a low
number of compounds with sufficient data to derive an SSD as
well as in SSDs that are “unstable” because of low data numbers.
To enable decision-support applications of SSDs for as many
compounds and uses as possible, by reconsidering the afore-
mentioned criteria, we collated species sensitivity data from
existing sources.We created abase set of ecotoxicity data for test
situations that may occur in nature. We were able to derive SSDs
for a large number of compounds and added a quality score to
eachSSD.We illustratehowSSDsand theirquality scoresareused
in assessment planning and interpretation.

The aims of the present study were to describe the following:
1) data collection and curation for as many chemicals as feasible;
2) the derivation of chemical-specific SSDs, each with a quality
score; 3) the application and evaluation of methods to bridge
data gaps; 4) the utility and limitations of using SSDs in practical
assessments (case study); and 5) the set of SSDs for further use
(Supplemental Data, Table S2).

The scope for using the SSDs is global. Supplemental Data,
Table S2, presents 2 operationally defined SSD models for the
studied compounds, based on chronic no-effect or negligible-
effect data (e.g., no-observed-effect concentration [NOEC],
10% effect concentration [EC10], etc.) and acute median
effective concentration (e.g., EC50) data, respectively. The
former SSDs relate to current global practices in chemical safety
assessment and environmental quality assessment and man-
agement, operating via protective benchmark concentrations
(such as the predicted-no-effect concentration [PNEC] and
environmental quality standards [European Commission 2003,
2011] or similar benchmarks for geographies outside the
European Union). Exposures below protective benchmarks are
considered to imply no or negligible impacts, and ecosystems
are considered sufficiently protected at exposures below the
benchmark. The latter SSDs relate to current global practices in
life cycle impact assessment and other environmental assess-
ments in which likely impacts of chemical pollution are
quantified. That is commonly done in a comparative way,
between products and environmental samples (see Supplemen-
tal Data, Section 1). Increasing the number of compound-
specific SSDs is relevant for all policy uses.
MATERIALS AND METHODS

Ecotoxicity data

Ecotoxicity data were collated from many sources, curated
and operationally characterized for the 2 (chronic and acute)
�C 2019 SETAC
SSDs aimed at the following. 1) A validated set of existing and
well-referenced aquatic ecotoxicity database is described in De
Zwart (2002). All available toxicity data were designated to
represent chronic or acute toxicity criteria (Table 1): records
with the endpoints NOEC, lowest-observed-effect concentra-
tion, maximum acceptable toxicant concentration, EC0, EC5,
EC10, and EC20 are marked as “chronic NOEC” when they
have an appropriate taxon-dependent test duration (see
Table 1) and population-relevant effect criterion (e.g., repro-
duction, growth, population growth, and development, next to
mortality and immobility); and records with a sublethal (EC) or
lethal endpoint ranging from 30 to 70% are marked as “acute
EC50” when they have an appropriate taxon-dependent test
duration (see Table 1) and effect criterion (e.g., mortality and
immobility). This data set comprised of 30 806 records (3445
substances, 1556 different taxa, 2513 chronic NOEC values,
28 293 acute EC50 values). As described by De Zwart (2002),
this data set was comparatively checked for plausible toxicity
estimates. Implausible outcomes were traced to the original
reference for data misinterpretations, often attributable to
errors in unit transformations, typing errors, and/or tests
conducted under less optimal conditions. Erroneous entries
were corrected when possible, and data were removed when
original sources could not be checked (in this and later steps).
2) Further referenced data were added from an analysis and
categorization of listed compounds of established and
emerging concern under various national and international
legislations (see Stichting Toegepast Onderzoek Waterbeheer
2016.). Curation was as in data set 1. In addition, acute NOEC
values and chronic EC50 values were identified using the test
duration criteria. Data were obtained from a variety of sources:
the US Environmental Protection Agency’s ECOTOX database
(1995), comprising 58 714 records (1853 substances, 942 taxa,
15 019 acute EC50 values, 19 875 acute NOEC values, 21 676
chronic NOEC values, 2144 chronic EC50 values); a total of 952
test results from fish embryo toxicity tests on 214 substances
with 4 different fish species adopted from the Procter &
Gamble Company (Oris et al. 2012); Das et al. (2013) and
Sanderson and Thomsen (2009) provided 334 records of
measured acute EC50 toxicity concerning algae, daphnids,
and fish for 162 different pharmaceuticals’ active ingredients; a
series of reports generated to define preliminary environmental
quality criteria for compounds suspected to cause impact
provided additional information mainly on pesticides and
pharmaceuticals (Ost�e et al. 2010; Harezlak and Keijzers 2011;
wileyonlinelibrary.com/ETC
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Smit and Keijzers 2015), consisting of 1059 records on acute and
chronic ecotoxicity for 37 substances involving 215different taxa;
a series of draft assessment reports from the European Food
Safety Authority (2015) and the Pesticide Properties Database
(University of Hertfordshire 2007); the Swiss Centre for Applied
Ecotoxicology provided a large number of dossiers on the
ecotoxicity of pharmaceuticals and pesticides (EAWAG 2016);
and the WikiPharma database (MistraPharma 2015) was used to
complement ecotoxicity data for listed pharmaceuticals. 3) Data
in the Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH) registry (24 April 2015; European Commis-
sion 2006) after code harmonization added 207943 records on
acuteandchronic toxicityon8787different substances,mainly for
algae, daphnids, and fish; REACH data (European Commission
2006) are not properly documented regarding test conditions,
test duration, and exposed taxa and are not transparently
traceable to peer-reviewed origin; they were therefore analyzed
both separately as well as after combining with the other data.
4) Read-across acute ecotoxicity data (baseline, acute median
lethal concentration) for algae, daphnids, and fish were derived
for 5201 substances. Toxicity estimates were evaluated as the
lowest value derived by 2 different estimation methods: by
ECOSAR prediction (Mayo-Bean et al. 2017) and by methods
utilized by the Helmholtz-Zentrum f€ur Umweltforschung (UFZ).
The UFZ method for acute fish toxicity consists of an automated
read-across approach (Sch€u€urmann et al. 2011). This model
estimates baseline toxicity from log octanol–water partition
coefficients and corrects it by a toxicity enhancement derived
from experimental data for similar compounds. Compound
similarity isdeductedbycomparisonof atom-centered fragments
(K€uhne et al. 2009). For daphnids, a refined version of this
approach has been applied (K€uhne et al. 2013). For algae, a
simple model similar to that for fish was used, but the acute
toxicity was directly derived from experimental data of similar
chemicals taken from an internal data set. Again, these data
were analyzed both separately aswell as after combiningwith the
other data.
TABLE 2: Species sensitivity distribution extrapolation scheme by
factor from/to

From/
to

Order of
extrapolation
attempts to
acute EC50a

Acute EC50
extrapolation

factorb

Order of
extrapolation
attempts to
chronic
NOECa

Chronic
NOEC

extrapolation
factorb

Acute

EC50

0 Multiply by 1 3 Multiply by

1/10

Acute

NOEC

1 Multiply by 3 2 Multiply by 1/3

Chronic

EC50

2 Multiply by 3 1 Multiply by 1/3

Chronic

NOEC

3 Multiply by 10 0 Multiply by 1

aNumbers relate to quality scores in Table 4.
bNumbers express inter–species sensitivity distribution (SSD) extrapolations by
parallel SSD shift.
EC50¼median effect concentration; NOEC¼ no-observed-effect concentration.
SSD derivation

A variety of log-normal SSDs was derived. Available data
were used to derive a compound-specific SSD for all species
tested. The location and scale parameters of log-normal SSDs
(mu and sigma) were first derived with optimum data, and the
resulting SSDs were assigned a high quality score (“1111”).
Because decreasing test data numbers trades off into limited
numbers of compounds and potentially lower SSD “stability,”
additional SSDs were derived with various (inter-SSD) extrap-
olations to bridge data gaps, followed by an evaluation of
similarity to the high-quality ones.

In line with the data origin and the use contexts (both
chemical safety and environmental quality assessment), data
were subdivided according to source quality (literature refer-
enced vs nonreferenced and measured vs read-across) and to
effect endpoints (chronic and acute) with characterization of data
that were strictly measured ecotoxicity endpoints and obtained
by extrapolation.
wileyonlinelibrary.com/ETC
With the selection of strictly measured data, if more than 2
different taxa are tested for acute EC50 and chronic NOEC, the
summarization process consisted of estimating the 2 moments
of a log-normal SSD (Posthuma et al. 2002): 1) mu, the
population median of toxicity values with equal weight per
taxon, by first calculating the geometric average toxicity within
taxa and subsequently calculating the geometric average
toxicity over taxa of the geometric average toxicities per taxon,
and 2) sigma, the population standard deviation of 10log-
transformed toxicity data, without considering taxon weight. If
ecotoxicity data were available for less fewer 3 taxa, the process
was restricted to mu—the average of the population of 10log-
transformed toxicity values with equal weight per taxon. For
substances with too little data, an intermediate median SSD
slope (sigma) was adopted with a value of 0.7 (the average slope
over all data is 0.71).

The “strictly measured” data selection leaves many of the
collated data unused. When sufficient acute EC50 or chronic
NOEC values are not available but other toxicity endpoints are,
those are extrapolated to acute EC50 and chronic NOEC values
using empirically derived extrapolation values (De Zwart 2002;
Duboudin et al. 2004). Note that the correct interpretation of this
extrapolation is a parallel shift in an SSD, which is far more robust
than per-species acute–chronic ratio extrapolations (De Zwart
2002). Further test endpoints on acute EC50 and chronic NOEC
were first obtained after extrapolation from the most promi-
nently available single other test endpoints in the collated data
set. This was similar to the procedure for the strictly reported
ecotoxicity data. Extrapolation factors are summarized in
Table 2. If more than 4 substances shared the same primary
mode of action in this extrapolation procedure, the SSD slope
(sigma) was averaged over all substances with a similar primary
mode of action. If more than 5 different taxa are tested for either
acute EC50 or chronic NOEC, the input data were not further
extrapolated. If test data are available in this extrapolation
process for fewer than 3 taxa, the test endpoints (acute EC50 and
chronic NOEC) were summarized by extrapolation from all
available data, irrespective of the reported test endpoint. This
�C 2019 SETAC
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was done according to the scheme and the order presented in
Table 2, as derived from De Zwart (2002) and approximately
reconfirmed in the present study. If in the extrapolation process
the maximum coverage of ecotoxicity data is available for fewer
than 3 taxa, the summarization process is based on strictly
measured data and restricted to mu—the average of the
population of 10log-transformed toxicity values with equal
weight per taxon.
SSD types and quality scores

The database contains far more acute EC50 data than chronic
NOEC data, making SSDs from the former data more robust for
the majority of compounds. There are also other reasons that
some SSDs are likely better estimates of true but unknown
assemblage-wide sensitivity differences than others. Therefore,
we added 4-digit quality scores as shown in Table 3, with the
modality “1111” representing the highest quality. Derivation of
the slopemay ormay not be possible (digit 1). Representation of
different taxonomic groups was ranked (digit 2). Data origin was
classified (digit 3). When SSDs were derived via data-bridging
techniques, the method was scored (digit 4). The quality score
information was added for planning and interpreting an
assessment. This has a specific utility when large numbers of
samples and compounds are assessed andwhere an assessment
commonly involves prioritization of management efforts to
“most impacted sites” and “most contributing compounds.”
That is, prioritization is straightforward if all SSDs used in an
assessment are of high quality. If some SSDs are of low quality,
this generally indicates a need for collecting additional hazard
data. An exception may occur for assessments with limited
resources, with clearly high-ranking cases and some low-ranking
cases derived from (partially) lower-quality SSDs. Uncertainty
analysis may reveal whether additional hazard data can “move”
TABLE 3: Four-digit quality scoring of species sensitivity distribution
(SSD), based on underlying data types, quality, and numbers

Digit Quality aspect Modality Meaning

1 SSD fullness 1 Data on full SSD available (mu and
sigma)

1 2 Not sufficient data to calculate SSD
slope

2 Biodiversity
coverage

1 Number of taxa evaluated >10

2 2 Number of taxa evaluated >5
2 3 Number of taxa evaluated >2
2 4 Number of taxa evaluated <3
3 Data origin

quality
1 Strictly measured

3 2 Extrapolated
3 3 Read-across
4 Extrapolation

quality
1 Not extrapolated

4 2 Single-step extrapolation (Table 2)
4 3 Double-step extrapolation (Table 2)
4 4 Triple-step extrapolation (Table 2)
4 5 All available toxicity data

extrapolation (Table 2)
4 6 Read-across

�C 2019 SETAC
cases with a low rank and a low SSD quality “up” to the group
prioritized for management attention.
Evaluation of SSDs

Various regressions of “other” SSDsonhigh-quality oneswere
performed to evaluate thequality of the “other” SSDs (formu, the
SSD midpoint). Similar outcomes suggest that data sets can be
merged to derive SSDs from more data per compound. The
regressions involved REACH data (European Commission 2006),
read-across data, and extrapolated acute EC50 or chronic NOEC
data (cf. Table 2). These were regressed against the geometrical
average of high-quality SSDs, defined as strictly measured acute
EC50 or chronicNOEC toxicity data over tested taxa derivedwith
the curated and validated data for the substances. Also, the
geometric average of strictly measured chronic NOEC toxicity
data over tested taxa was regressed against the geometric
average of strictly measured acute EC50 toxicity data.
Example case study: Water quality assessment
and management prioritizations

Scope. The case study was set up to examine the largest
possible fraction of chemicals in commerce in Europe, focusing
on water quality and pollution impacts.

Exposure assessment. Predicted exposure concentrations
(PECs) were derived from European Union production data with
an integrated European Union-wide emission–fate–hydrological
model (J. Van Gils et al., Deltares, Delft, The Netherlands,
unpublishedmanuscript); details on PEC derivation and accuracy
are in Supplemental Data, Section 4. Combined with the SSD
results, required exposure and hazard data were available for a
subset of 1760 compounds, selected for adequate physicochem-
ical and ecotoxicological data representation. Predicted expo-
sure concentrations are freely dissolved concentrations and were
derived for 22278 modeled European Union subcatchments
(median spatial resolution 214 km2) for a 365-d period (with
weather data for the year 2013). This yielded 1.4� 1010 PECs.
Impact assessments. Toxic pressures of the individual chem-
icals and their mixtures were derived from the PECs per
subcatchment per day using the SSDs of the present study.
Compared with the mixture model of De Zwart and Posthuma
(2005), we applied a simplified approach to derive mixture toxic
pressures, by operationally assuming that all chemicals act
concentration additively,

X1760

i¼1

HUi;where HUi is
PECi

SSD midpoint mui

with HU being hazard unit. This is similar to the frequent practice
of water quality assessment for mixtures by linearly summed risk
quotients over compounds, whereby numerical values estimated
with the simplified and the original (more complex) model are
similar. The approach was modeled with the Microsoft Excel
wileyonlinelibrary.com/ETC
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function NORMDIST (10log[SHU],0,Average SSD slope¼ 0.7,1).
Chronic and acute mixture toxic pressures were quantified per
subcatchment per day.

Assessment and interpretation examples. The vast number
of daily mixture toxic pressure data for individual subcatchments
(8.1� 106) were summarized using various approaches and
statistics. Relative impact rankings across water bodies were
visualized as Geographic Information Systems (GIS) maps, based
on the years’ 95th percentile concentration (P95) multisubstance
potentially affected fraction (msPAF) values. Relative rankings of
thecontributionsof chemicals to those impactsona regional scale
werederived in 2 steps. In the first step, a relative toxicity score for
each compound in a subset of samples (Europe or a specific
example river basin) was determined as the product of the mean
compound toxic pressure in the set and the ratio between the
non-zero values for that compound and the non-zero values for
the mixtures. Those represent the magnitude and the relative
contribution and frequency of increased compound pressures to
total mixture pressures. All scores were then relatively ranked
using the lowest-ranking compound as the baseline (defined as
“1”). Case study example data are shown for all European basins
or, for some assessments, for a typical northwestern (Rhine), a
southeastern (Danube), and a set of southern basins (the Spanish
basins of Ebro, Guadalquivir, Xuquer, and Llobregat combined).
RESULTS

Ecotoxicity data

The collated and curated data set for deriving SSDs consists
of 256 409 records (details on the data set are in Supplemental
Data, Section 2). Data origins (strictly measured and referenced
up to read-across) were tagged, to allow derivation and
comparisons of various types of SSDs for a compound.
SSD types and quality scores

A single compound may have various SSDs: from chronic or
acute data, from referenced data, from unreferenced REACH
data (EuropeanCommission 2006) or read-across data, and from
strictly measured or extrapolated data. The SSDs could be
derived for 12 386 compounds, where 12 214 originate from
acute EC50 data and 7540 from chronic NOEC data. Their
characteristics are summarized in Supplemental Data, Table S2,
where the acute and chronic SSD data are selected to represent
the lowest available quality score (best-quality SSD), while
combining the referenced and unreferenced REACH data
(European Commission 2006). The quality scores vary from
1111 to 2436 or 2411 for acute and chronic SSDs, respectively.
Supplemental Data, Table S2, also contains a summary overview
of the numbers of compounds per SSD type.
FIGURE 1: Comparison of acute median effect concentration (EC50)
species sensitivity distribution (SSD) midpoint data for 3 SSD derivation
approaches regressed on highest-quality SSD midpoint data. The x-axis
shows highest-quality SSDs (traceable data, all taxa, geometrically
averaged, measured data, acute EC50). The y-axis shows “other” and
“derived” SSDs (A¼untraceable data [REACH], blue; B¼ read-across,
green; C¼optimally extrapolated, red).
Evaluation of SSDs

The first evaluation considered regressions of acute SSDs
derived from various methods (“other”) on high-quality
wileyonlinelibrary.com/ETC
nonextrapolated SSD midpoints. The regressions were all
significant (Figure 1): SSDs based on acute EC50 REACH data
(European Commission 2006; A), overlapping number of com-
pounds 927, y¼ 0.8173xþ 0.7025, R2¼ 0.65, p< 0.001; SSDs
basedonacuteEC50 read-acrossdata (B), overlappingnumberof
compounds 1116, y¼0.5914xþ1.2515, R2¼ 0.49, p<0.001;
SSDs based on acute EC50 data extrapolated from other test
endpoints (C), overlapping number of compounds 3827, y
¼0.9611xþ0.1362, R2¼ 0.95, p< 0.001. The read-across SSDs
(related to baseline toxicity) showed more variability and
appeared to underestimate the mu for the most toxic substances
up to a factor of 10 compared with high-quality SSDs. The
reliability of acute EC50 SSDs based on the other data analysis
methods decreases in the sequence extrapolated SSDs�
REACH-based SSDs> read-across SSDs.

The second evaluation similarly considered 2 regressions,
now for SSDs from chronic NOEC data (Figure 2). For chronic
NOEC REACH data (European Commission 2006), the relation-
ship with the chronic high-quality nonextrapolated SSD mid-
point data was less strong than for the EC50 data but still highly
significant (A; overlapping number of compounds 251, y
¼0.7448xþ 0.8502, R2¼0.60, p< 0.001). For the most toxic
substances, the REACH data (European Commission 2006) tend
to underestimate toxicity compared with the well-referenced
data set by a factor of up to approximately 30. A highly
significant relationship was found between extrapolated chronic
data and the chronic high-quality nonextrapolated SSD mid-
point data (B; overlapping number of compounds 1131,
y¼ 0.7941xþ0.5902, R2¼ 0.74, p<0.001). The extrapolated
data also tend to underestimate toxicity comparedwith the high-
quality data by a factor of up to approximately 10. The reliability
of chronic-NOEC SSDs based on the other data analysis was
relatively similar for both other methods.

The third evaluation considered the comparison of SSDs
based on NOECs versus EC50s. This showed a significant
association between the mu values for the 250 substances for
�C 2019 SETAC



FIGURE 2: Comparison of chronic no-observed-effect concentration
(NOEC) species sensitivity distribution (SSD) midpoint data for 2 SSD
derivation approaches regressed on highest-quality midpoint data. The
x-axis shows highest-quality SSDs (traceable data, all taxa, geometrically
averaged, measured data, chronic NOEC). The y-axis shows other SSDs
(A¼untraceable data [REACH], B¼optimally extrapolated, red).
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which both aspects are strictly measured and quantified
(Figure 3; n¼250, y¼0.7304x – 0.4414, R2¼ 0.60, p< 0.001).
On average, the chronic NOEC is less than a factor of 10 lower
than the acute EC50, which represents an observed factorial
shift of the SSD. A limited number of outliers have a strong
influence on this regression. A restriction of the regression to
the 5th to 95th percentile data intervals yielded a factorial
difference of approximately 6.6 and a slope of approximately
0.85 (n¼225, y¼ 0.8509x – 0.8237, R2¼0.76, p< 0.001).
These outcomes suggest that, on average, an SSD NOEC
can be derived from an SSD EC50 by extrapolation (as shown
in Table 2) but also that the variability around the average
should be taken into account when such an extrapolation
would be used in practice.
FIGURE 3: Comparison of species sensitivity distribution midpoints for
acute median effect concentration (x) and chronic no-observed-effect
concentration (y). A¼All data points, blue dots and blue line; B¼ all data
points, restricted to the P5-P95 data ranges, red dots and red line.
EC50¼median effect concentration; NOEC¼no-observed-effect
concentration; P5–P95¼5th to 95th percentile concentration.
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Example case study: Water quality assessment
and management prioritizations

Scope and illustrative purpose. Presented results illustrate
how the method allows for impact rankings of sites and of
relative importance of substances within basins or water bodies.
The impact assessments are based on the large series of
exposure concentrations (detailed in Supplemental Data,
Section 4). It should be noted that alternative data summary
choices—related to the assessment problem—yield different
results. Results are therefore explicitly not to be interpreted as a
list of Europe-wide priority sites or priority chemicals in a Water
Framework Directive (European Commission 2000) context.
Impact assessment and prioritizations. Various impact
assessment and prioritization outcomes are illustrated, based
on the large set of PECs for 1760 substances that all have
relatively high SSD quality scores, from 1111 to 1324 or 1325 for
chronic and acute, respectively. Mixture toxic pressures based
on chronic or acute SSDs were derived andmapped, to illustrate
the spatial variation of these impact-related metrics (Figures 4
and 5, respectively). because GIS maps cannot plot both space
and time, the example figures are based on the 95th percentiles
of predicted mixture toxic pressures over a year (P95-year¼18
d). Themixture toxic pressure of a water body is higher for 5% of
days in the modeled year. The interpretation proceeds as
follows. 1) Per-species interpretation: Colors represent the
variation of the probability that a randomly selected species
from the set of tested species would be exposed beyond the
species’ chronic no-effect level or the acute EC50 for at most 18
d per year. These outcomes represent the “probability of effects
on a species” (PES) of the water pollution at the level of
“initiation” or “substantial harm,” respectively (Suter et al.
2002). A PES value characterizes the potential of the polluted
water to cause harm, which is the basis for the term “toxic
pressure.” 2) Biodiversity interpretation: A quantitatively identi-
cal expression of the outcome is the potentially affected fraction
of species (PAF), but the interpretation narrative differs. The PAF
expression relates to the regulation-defined endpoint of
protecting against biodiversity reduction in species assemb-
lages. A PAF value relates to the concept of protective
benchmarks, if those are derived from an SSD of chronic
NOECs, such as the hazardous concentration for 5% of the
species (HC5). Higher toxic pressures imply higher fractions of
species affected for the studied acute or chronic endpoint. 3)
Regulatory interpretation: The 2 maps relate to 2 current policy
approaches: chemical safety and environmental quality assess-
ment policies and ecological impact assessment. The 2
approaches operate via the protective benchmark no-effect
concept (using PNEC and environmental quality standards for
REACH [European Commission 2006] and theWater Framework
Directive [European Commission 2000], respectively), below
which ecosystems are considered “sufficiently protected” for
expected or observed exposures. For single compounds or
mixtures, sufficient protection relates to PAF-NOECmax¼
msPAF-NOECmax¼ 0.05, which is in regulatory terms consid-
ered to protect 95% of the species against adverse effects. In
wileyonlinelibrary.com/ETC



FIGURE 4: Results mapped in relation to the regulatory concept of “sufficient protection” of aquatic ecosystems (initial effects, distress), used in
chemical safety assessment (e.g., Registration, Evaluation, Authorisation and Restriction of Chemicals, predicted-no-effect concentration) and water
quality assessment of chemicals according to theWater Framework Directive (environmental quality standard). Blue: species assemblages in the water
bodies are “sufficiently protected” for 95%of the days (multisubstancepotentially affected fraction [msPAF]–no-observed-effect concentration [NOEC]
<0.05, 95th percentile concentration [P95] of a year¼18d; see text). Technical output specification: numbers are P95-year of msPAF–chronic NOEC
per site (n¼22728 water bodies).

FIGURE 5: Results mapped in relation to the regulatory concept of ecological impact magnitudes (species loss), as utilized to classify ecological
impacts under the Water Framework Directive. Higher multisubstance potentially affected fraction (msPAF)–acute median effective concentration
(EC50) values empirically relate to increased species loss. Technical output specification: numbers are 95th percentile concentration of a year msPAF–
acute EC50 per site (n¼22728 water bodies).
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Figure 4, this equivalency was used as a class boundary between
sufficient and insufficient protection (blue–green boundary),
with other colors represent increasing distress (exposure higher
than the no-effect level). In Figure 5, the color scale relates to
increased biodiversity effects, found in empirical studies, which
can be aligned with ecological impact classification used in the
Water Framework Directive (European Commission 2000) to
define moderate, poor, and bad water quality.

Impact distributions across water bodies were investigated
with the same data. The water quality would be classified as
“insufficiently protected” for approximately 65% of all European
water bodies (P95-year msPAF-NOEC data; Figure 6). Specific
basins have higher fractions of water bodies with insufficient
protection, with average values of approximately 93, 88, and
79% for the example basins of the Rhine, the Danube, and the
Spanish basins, respectively. The observed Pareto-type
(skewed) distributions imply that relatively few sites are
characterized by relatively high chronic toxic pressures.

Relative impact contributions of chemicals were investigated,
with the same data (example for acute SSD EC50 ranking) and
toxic pressure data aggregated over an area and over time. We
derived a top-15 ranking of substances (Table 4). The top 15
explained nearly 99.5% of the mixture exposure effects, with
<0.5%explainedby the remaining1745compounds.ThisPareto-
type distribution implies that approximately 1% of the com-
pounds cause 99% of the exposure impacts, leading to a Pareto-
type “99–1” rule for species loss for the P95-year assessment.

Some of the top 15 chemicals were not identified as
potentially relevant following current compound prioritizations
according to the Water Framework Directive (European
FIGURE 6: Cumulative distributions of mixture toxic pressures of the individ
(Rhine, n¼813; Danube, n¼3477; Spanish basins, n¼696). x-axis¼ rank ord
effect or 50%-effect level, under the assumption of concentration additivity o
msPAF¼multisubstance potentially affected fraction; NOEC¼no-observed
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Commission 2000) or the NORMAN network (kindly provided
by Valeria Dulio, executive secretary of NORMAN Association
2016). Modeling expected impacts may identify chemicals that
likely affect ecosystems but that are not identified bymonitoring
(because of lack of attention, lack of analysis methods, or
detection limits that are higher than effect benchmarks).

Final interpretation of an assessment. In a comprehensive
assessment, these types of results would be further checked
before being used for management prioritization. First, ranking
outcomes should be checked on their fit to the assessment
problem. For example, prioritizations will differ when chemicals
with peak exposures (such as pesticides) are involved, and
the assessor may then evaluate outcomes from P99-year-based
ranking. The outcomes of this are illustrated in Supplemental
Data, Section 5. Second, SSD-quality scores should be evaluated
for their potential influence on the interpretation (quality
scores were high for the top 15 chemicals). Third, outcomes
will normally be interpretedwith other lines of evidence. In doing
so, collection of data on the top 15 chemicals showed that 2
compounds, terbufos and phorate, are no longer approved in
the European Union. Because all of our assessment runs were
based on dossier data which we did not a priori screen on
forbidden compounds so that the high ranks are not relevant
for current prioritizations; however, the past nonapproval
decision is supported by the high ranks found for these
compounds. Further compound details are in Supplemental
Data, Section 6, showing that all of the top 15 compounds are
characterized by high productionmass, ubiquitous use, and high
hazard classifications.
ual subcatchments of Europe (n¼22728) and of 3 example basin areas
er of subcatchments; y-axis¼probability that exposures exceed the no-
f the substances in the mixtures. EC50¼median effective concentration;
-effect concentration; P95¼95th percentile concentration.
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TABLE 4: Example of chemical rankinga

Substance CAS
WFD
priority

Norman
priority

All 22 EU
basins

Danube
basin

Rhine
basin

Spanish
basins Count Rank

Bisphenol-A 80-05-7 √ √ 90316 85935 277239 110079 4 1
N-1,3-Dimethylbutyl-N0-phenyl-p-
phenylenediamine

793-24-8 2573 2451 20344 3528 4 2

Chlorpyrifos 2921-88-2 √ 1629 2755 78285 3 3
Anthracene 120-12-7 √ 1502 6675 3528 247 4 4
Octamethylcyclotetrasiloxane 556-67-2 √ 1483 6325 1320 92 4 5
N-(4-Aminophenyl)aniline 101-54-2 1381 268 15144 393 4 6
Cumene hydroperoxide 80-15-9 1123 4332 2242 634 4 7
Difenylamine 122-39-4 √ 589 308 8667 1028 4 8
1-Dodecanol 112-53-8 48 558 2 9
Pyraclostrobin 175013-18-0 41 151 114 3 10
Cyhexatin 13121-70-5 25 8 2821 3 11
p-Phenylenediamine 106-50-3 19 17 97 3 12
Dimoxystrobin 149961-52-4 11 46 37 3 13
Terbufos 13071-79-9 6 75 96 3 14
Phorate 298-02-2 1 110 2 15
Count 3 3 15 14 10 11
Sum relative score of 15 substances 100748 109904 328733 197314
Sum relative score of remaining 1760
substances

208 571 0 0

Percent of sum relative score in top 15
substances

99.8% 99.5% 100.0% 100.0%

aAn illustration of the top 15 ranked toxicants, their species sensitivity distribution quality scores, and their relative impact potential to species loss. Outcomes based on 95th
percentile concentration (P95)–multisubstance potentially affected fraction–median effect concentration, for Europe and for 3 example case study basins (relative ranks
defined by phorate for whole-Europe data defined as baseline, “1”). Priority marks: compound listed as priority compounds for management attention following WFD or
NORMAN methods. Note that the choice for P95 excludes peak exposures of, for example, pesticides (see Supplemental Data, Section 6).
CAS¼Chemical Abstracts Service; EU¼European Union; WFD¼Water Framework Directive.
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DISCUSSION

Key innovations

The present study addresses the problem that different
environmental policy frameworks have developed very different
practices in handling ecotoxicity data and assessment models,
with major trade-offs for practical assessments. Various guid-
ance documents prescribe strict criteria for data selection and
SSD derivation. The downside of such criteria is that the risks of
most compounds and their mixtures cannot be evaluated,
prioritized, and managed. Current water quality assessment
under the Water Framework Directive (European Commission
2000) considers, for example, only 0.2% of the compounds in
commerce (environmental quality standards for approximately
300 compounds [European Environment Agency 2018] vs
>146000 registered compounds on the REACH website). To
address that trade-off, we developed SSDs and associated
mixture approaches for a large number of chemicals, to enable
more comprehensive and realistic assessments.

Innovative aspects of the present study are 1) the methods
and sources for the collection and curation of ecotoxicity data, 2)
the SSD derivation and quality scoring method, 3) the extra
information that can be gained from inter-SSD comparisons and
extrapolations, 4) the utility of SSD-based assessment outcomes
for ranking sites and compounds (illustrated in the case study),
and eventually 5) the opportunity to use a consistent set of
ecotoxicity data and SSDs for various practical policies. For the
practical uses, assessors should be aware of the limitations of
SSD-based assessments because SSDs do not consider food-
chain exposures or indirect effects (e.g., on predators via toxicity
wileyonlinelibrary.com/ETC
to prey). Moreover, they should be aware of the fact that the
simple expression of the toxic pressure for a water body has the
complex interpretation that the species that are exposed will
show widely different impacts, related to the species sensitivity
differences that are the basis of SSDs.
Expanded number of compounds, SSDs, quality
scores, and SSD applications

We operationally derived separate acute and chronic SSDs
for many compounds. Those may—in principle—be used for all
policy purposes. Checking SSD-quality scores is thereby always
important. Low-quality scores (e.g., caused by few ecotoxicity
data or by extrapolation) may be consequential. For example,
the calculated acute-median sensitivity (mu-acute) may be
smaller than the calculated chronic value (mu-chronic) because
of the haphazard effect of small data sets. This specific effect
occurred for approximately 1.3% of the SSDs (160 data lines in
Supplemental Data, Table S2). Low SSD-quality scores can only
be improved by collecting more test data. When quality scores
are considered sufficient, the way to use the SSDs for practical
assessments is basically as follows.

First, we acknowledge that current guidelines exist on
deriving protective benchmark concentrations, and the results
of the present study may therefore not be adopted for specific
policies. However, if there are no data that fit the current
guidance for a contaminant of potential concern, a provisional
benchmark concentration can be derived, for example, via the
chronic-acute SSD-level relationship shown in Figure 3, to
�C 2019 SETAC
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provide provisional insights into potential impacts for data-
poor chemicals. Second, the utility for water quality assessment
and management prioritization was shown in the case study,
based on relative rankings of impact levels across water
bodies and compounds within the studied basins. Third, the
SSDs can be used for establishing the environmental (ecotox-
icity) footprints of products as well as production-chain
ecotoxicity hot spots, to enable production and selection of
environmentally benign products. The European Union recently
derived SSD-based effect factors for this purpose from 3
regulatory data sources for thousands of chemicals (Saouter
et al. 2018). Consistent environmental protection and pollution
management can be based on the SSDs presented in the
present study, for a wide array of compounds. Critical use
must be supported by the quality scores. If needed, specific
SSD types with specific quality scores may be earmarked for
specific purposes by the user, for example, for repetitive
assessments.
Prioritization opportunities

All assessment outcomes of SSDs relate to ranking as the
basis for management prioritization and efficacy. For an array
of compounds, the rank order of protective benchmarks (e.g.,
HC5s, PNECs, environmental quality standards) reflects the
relative potency of different compounds to cause harm. For an
array of sites, the order of (mixture) toxic pressures similarly
reflects impact differences across sites. For an array of
products, outcomes identify benign products and produc-
tion-chain hotspots. Outcomes of acute-data SSDs have even
been used in disaster assessment and management by United
Nations Disaster Assessment and Coordination teams (Sup-
plemental Data, Section 1). The case study only illustrates the
ranking of polluted water bodies. Based on experiences with
case study data (such as in Table 4), we recommend that
rankings for all applications are not interpreted as absolute
and as fixed order of cases because natural and human-made
variabilities of exposure occur. That is, pesticides may have a
high rank order only during the growing season, with further
influences of weather (e.g., rainfall events) affecting emissions
of some chemicals (via runoff) and dilution of all chemicals.
Instead of assuming an absolute idea of site or substance
ranking, we propose the use of classes. For example, 1) an
“always high”-ranking class of sites or compounds, where the
probability of impact is always high; 2) an “always low”-ranking
class, where the low probability of impact allows one to
“exclude the innocent”; and 3) an “intermediate” class, where
the probability of impact depends on the situation. These
classes would discriminate 3 clear management perspectives:
1) action needed, 2) no action needed, and 3) possible further
lines of evidence needed. The concept of using classes is
further supported by results from field monitoring (Vallotton
and Price 2016). Based on this phenomenon, assessors can
also consider the opposite of prioritizing the higher-impact
sites or compounds for management, by considering the lower
tail of the distribution (Figure 6). With a large number of ranked
cases and limited management resources, there may be an
�C 2019 SETAC
opportunity to “exclude the innocent,” even when some SSD-
quality scores underlying the lower-tail ranking are low.
Case study: Utility example on ranking toxic
pressures for sites and substances

The case study illustrates how site and substance ranking
provides management prioritization insights, refining global
water quality classification practices. The latter are currently
based on comparing single-chemical exposure concentrations
to a protective benchmark. This results in a binary outcome of
water quality assessment: there is “(in)sufficient protection,”
which is then interpreted and communicated as “polluted” or
“unpolluted.”When applied tomixtures, the application of such
an approach to European surface waters showed that all water
bodies of a country can be interpreted as polluted (see, e.g.,
European Environment Agency 2012). This incorrectly seems to
suggest equal management needs for all studied water bodies,
neglecting that low and high benchmark exceedances imply
lower and higher impacts and lower or higher motives for
pollution reduction, respectively. The case study shows that
current practices can be refined, to highlight where impacts are
likely highest, according to compound(s)/groups. These rank-
ings help prioritization of management and select measures that
reduce impacts (improve water quality) most. Novel case study
insights are as follows. First, European water quality is currently
insufficiently protected (Figure 4), corroborating the study of
Malaj et al. (2014). Second, this implies an associated degree of
likely species loss (Figure 5), based on empirical evidence for the
association between msPAF-acute EC50 and species loss (e.g.,
Posthuma et al. 2016). Third, this is attributable to relatively few
compounds at the European and basin scales (Table 4), also
foundbyothers (e.g., Vallotton andPrice 2016). Fourth, the high-
ranking compounds share specific characteristics: high mass
used in Europe and ubiquitous use and high hazard character-
istics for aquatic ecosystems (see Supplemental Data, Section 6).
This means that chemical safety assessment knowledge (as
collected for, e.g., REACH [European Commission 2006])
provides meaningful indications of potential impacts in aquatic
ecosystems. All of these insights were obtainedwith compounds
with high SSD-quality scores. The sequence of analysis steps was
designed in line with the holistic principles of the Water
Framework Directive (European Commission 2000). It implies
a stepwise and meaningful “system–site–substance–solution”
focus in the assessment of impacts and planning ofmanagement
of European surface waters.
Assessment problem definition, model choice,
and interpretation

The case study resulted in outcomes for a specific set of
conditions (e.g., year P95data). Inpractical assessments, themost
informative outcomes for management prioritization should be
generated by tailoring the assessment to the specific conditions.
For example, if the emissions of all chemicals in a region are rather
constant (e.g., household chemicals), the assessor may
wileyonlinelibrary.com/ETC
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investigate especially spatial exposure and impact ranking using,
for example, the year-P50 or P95 toxic pressures, whereas for
exposures in an agricultural landscape the assessor may focus on
peak exposures (e.g., year P99data). Supplemental Data, Section
5, illustrates the increased toxic pressures when using, for
example, the P99-year data (4-d peak exposures are covered).
The number of sufficiently protected sites (chronic mixture toxic
pressure<0.05) is lower, and predicted species loss is higher. It is
important to note that the applied European Union–wide model
operates with a spatial resolution of approximately 200 km2, and
consequently, probabilities of impacts at point sources (e.g.,
downstream wastewater-treatment plants) are not shown in
detail. In thevicinity ofpoint sources, impactsmaybemuchhigher
than shown in the present study via water body–level exposure
data.

Combining lines of evidence and planning of
monitoring

An assessment of the likelihood of impacts under the Water
Framework Directive (European Commission 2000) consists of
various lines of evidence. Model results can be combined with
information froman“assessment of pressures” (human activities),
available monitoring data, and other information. Information
may consider sources as diverse as nontarget screening of the
presence of chemicals (Hollender et al. 2017) to effect-based
methods that assess impacts of complex mixtures in water
samples (Altenburger et al. 2015). Planning and management of
river basins combine these lines of evidence, and the use of SSDs
in this process allows the assessor to obtain highly specific
informationon the likelihood that chemicalpollution causesharm.

The case study results also contain a suggestion on
monitoring and management for 10 additional compounds
compared with current practices (Table 4).

Communicating results and evaluating trends

Currently, one of the conundrums of pollution assessment
and management is the communication of results. In the case
study, 1.5� 1010 exposure concentrations had to be summa-
rized for management planning, and this number multiplies if
an assessor wants to evaluate trends of past management or of
optional abatement strategies. To address this problem,
mixture toxic pressures can be summarized as chemical
footprints for a region (Bjørn et al. 2014; Zijp et al. 2014).
The changes caused by past management or future abatement
scenarios can then be summarized and communicated via
chemical footprints, to summarize spatial or temporal trends in
mixture impacts for large regions. Thus, SSDs can be used as an
effective, though lower-tier (screening), approach for water
quality assessment and management in the context of a wide
diversity of policy fields, with opportunities to explore “big
patterns” (footprints) as well as “details” (specific sites and
chemicals within sites). The use of SSDs provides an
intermediary tool that lies between generic assessments of
chemical safety and more specific impact assessments based
on more complex (ecological) modeling.
wileyonlinelibrary.com/ETC
CONCLUSIONS

The following conclusions were reached. 1) Species
sensitivity distributions are used in environmental protection,
assessment, and management practices, currently for a few to
a few thousand compounds only. 2) Species sensitivity
distributions are provided for 12 386 substances, with a quality
score to assist in planning and interpretation of assessments. 3)
The utility of the SSDs was illustrated for water quality
assessment at the European scale considering 1760 com-
pounds and their mixtures. 4) The role of chemical pollution in
aquatic ecosystems could be specified, regarding both the
regulatory concept of sufficient protection (REACH [European
Commission 2006] and Water Framework Directive [European
Commission 2000]) as well as species loss (Water Framework
Directive [European Commission 2000], ecological status
impact classification). 5) The use of models is suggested in
the European Water Framework Directive (European Commis-
sion 2000), and SSDs are fit for that use because they help to
express expected impact magnitudes of pollution. 6) The use
of SSDs for water quality assessment follows the holistic
principles of the Water Framework Directive (European
Commission 2000) and supports a “system–site–substance–
solution” sequence in the assessment of impacts and planning
of management. 7) The use of SSDs complements the current
per-chemical benchmark approach, which substantially im-
proves the diagnosis and communication of chemical pollution
in surface waters.
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the Wiley Online Library at DOI: 10.1002/etc.4373.
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